
Lagrangian Duality

Wing-Kin (Ken) Ma

Department of Electronic Engineering,
The Chinese University of Hong Kong, Hong Kong

Lesson 10, ELEG5481



Recall that...

• Optimization problem in a standard form (not necessarily convex)

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m (P)

hi(x) = 0, i = 1, . . . , p

with problem domain D =
⋂m

i=0domfi ∩
⋂p

i=1domhi.

• We call (P) the primal problem (to distinguish from dual introduced soon).

• Primal optimal value
p⋆ = inf

x∈C
f0(x)

where C is the primal feasible set

C = {x | fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}
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Lagrangian

• Lagrangian of the primal problem (P)

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

where λ � 0 (or λi ≥ 0 for i = 1, . . . ,m), & ν ∈ Rp.

• Fixing an x, L(x, λ, ν) is an affine function of (λ, ν) (convex & concave).

• Lagrange dual function:

g(λ, ν) = inf
x∈D

L(x, λ, ν)

By pointwise infimum of concave functions, g is concave (even though (P) is
nonconvex).
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Linear approximation interpretation of Lagrangian:

• The original problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m hi(x) = 0, i = 1, . . . , p

may be written as an unconstrained problem

min f0(x) +
m
∑

i=1

I−(fi(x)) +

p
∑

i=1

I0(hi(x))

where I−(u) = 0 for u ≤ 0, I−(u) = ∞ otherwise; I0(u) = 0 for u = 0,
I0(u) = ∞ otherwise.

• Lagrangian may be seen as a linear approx. of the reformulated objective

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)
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Lower Bound Property and Dual Problem

• Lower bound on primal optimal: For any λ � 0 & ν,

g(λ, ν) ≤ p⋆

• Dual problem of (P)

max
λ,ν

g(λ, ν) (D)

s.t. λ � 0

– Motivation: compute the best lower bound on p⋆.
– (D) is always convex, whether or not (P) is convex.

• Dual optimal value:
d⋆ = sup

λ�0,ν
g(λ, ν)
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Example: Standard form LP

min cTx

s.t. Ax = b, x � 0

Its Lagrangian

L(x, λ, ν) = cTx− λTx+ νT (b− Ax) = (c− λ−ATν)Tx+ bTν

Its dual function

g(λ, ν) =

{

bTν, c− λ− ATν = 0
−∞, otherwise

Hence its dual problem is

max bTν
s.t. c−ATν = λ, λ � 0

⇐⇒
max bTν
s.t. c−ATν � 0

which is an LP in inequality form.
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Example: Homogenous Boolean QP (very hard problem)

min xTCx

s.t. xi ∈ {−1,+1}, i = 1, . . . , n

where C ∈ Sn, not necessarily PSD.

The problem can be rewritten as

min xTCx

s.t. x2
i = 1, i = 1, . . . , n

The dual problem is shown to be an SDP

max − 1Tν

s.t. C + diag(ν) � 0

where 1 is the all-one vector, & diag(ν) is a diagonal matrix with diagonals given
by ν.
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Weak and Strong Duality

• The primal and dual optimal values

p⋆ = inf
x∈C

f0(x), d⋆ = sup
λ�0,ν

g(λ, ν)

generally satisfy
d⋆ ≤ p⋆.

This is called weak duality.

• Strong duality refers to cases where

d⋆ = p⋆

• Strong duality does not hold for general nonconvex problems, except for some
special cases.

• Strong duality usually holds for convex problems. (convex problems without
strong duality would be pathological cases, from an application viewpoint)
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Strong Duality Conditions for Convex Problems

• Constraint qualifications refer to conditions under which strong duality holds.

• Slater’s constraint qualification: Suppose (P) is convex. If (P) is strictly
feasible; i.e., there exists a point x ∈ C such that

fi(x) < 0, i = 1, . . . ,m

then strong duality holds.

• Slater’s condition provides a very important implication that convex problems
usually (though not always) have strong duality.
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Examples where Strong Duality holds for a Nonconvex

Problem

Minimum eigenvector problem:

min xTCx

s.t. xTx = 1

where C ∈ Sn is not necessarily PSD. (strong duality proof is quite simple)

Nonconvex QCQP with one constraint:

min xTA0x+ 2bT0 x+ c0

s.t. xTA1x+ 2bT1 x+ c0 ≤ 0

where A0, A1 ∈ Sn are not PSD. (require S-lemma to prove strong duality)

• In these special examples strong duality is quite fragile. Adding a few more
constraints (even affine) could destroy strong duality.
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Implication of Strong Duality in Algorithms

• Suppose that strong duality holds.

• Suppose that we can design an opt. algorithm that can produce, at iteration k,

a primal feasible x(k), a dual feasible (λ(k), ν(k))

and that it has a structure

repeat

k := k + 1.
Produce primal-dual feasible (x(k), λ(k), ν(k)) from (x(k−1), λ(k−1), ν(k−1)).

until a stopping criterion is satisfied.

W.-K. Ma, Dept. EE, The Chinese University of Hong Kong 11



• If we stop the algorithm when

f0(x
(k))− g(λ(k), ν(k)) ≤ ǫ

for a given tolerance ǫ > 0, then

f0(x
(k))− p⋆ ≤ ǫ

that is, an ǫ-optimal solution is guaranteed.
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Primal & dual values of a primal-dual path-following algorithm.
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Implication of Strong Duality in Optimality Conditions

• Suppose that strong duality holds, & that (x⋆, λ⋆, ν⋆) is a primal-dual optimal
point.

• Complementary slackness:

λ⋆
i fi(x

⋆) = 0, i = 1, . . . ,m

It implies two possibilities

fi(x
⋆) < 0 =⇒ λ⋆

i = 0

λ⋆
i > 0 =⇒ fi(x

⋆) = 0
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Solving the Primal Problem from the Dual

• Again suppose strong duality holds, & (x⋆, λ⋆, ν⋆) is primal-dual optimal.

• Further, suppose that (λ⋆, ν⋆) is known. If

min
x∈D

L(x, λ⋆, ν⋆) (†)

has a unique solution, then its solution is x⋆.

• Implication: If the dual problem can be easily solved, then we can solve the dual
problem first, followed by solving the unconstrained minimization (†).

• Further, for a convex problem

L(x, λ⋆, ν⋆) = f0(x) +
∑

iλ
⋆
i fi(x) +

∑

iν
⋆
i hi(x)

is convex in x (by non-negative weighted sum). Hence (†) can be solved by

0 = ∇xL(x, λ
⋆, ν⋆) = ∇f0(x) +

∑

iλ
⋆
i∇fi(x) +

∑

iν
⋆
i∇hi(x)
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Karush-Kuhn-Tucker (KKT) Conditions

• Suppose fi & hi are differentiable.

• For convex problems with strong duality, the sufficient & necessary
conditions for (x⋆, λ⋆, ν⋆) to be optimal are

hi(x
⋆) = 0, fi(x

⋆) ≤ 0,∀i (primal feasibility)
λ⋆
i ≥ 0,∀i (dual feasibility)

λ⋆
i fi(x

⋆) = 0,∀i (complementary slackness)
∇f0(x

⋆) +
∑

iλ
⋆
i∇fi(x

⋆) +
∑

iν
⋆
i∇hi(x

⋆) = 0

• For a nonconvex problem with strong duality, KKT conditions are necessary but
not sufficient.

• For a nonconvex problem with weak duality, KKT conditions are necessary
conditions for local optimality with an additional assumption called regularity.
(But if your problem only has one KKT point, then that KKT point is either
optimal or there is no solution to the problem)
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Importance of KKT conditions

• If the KKT conditions can be solved analytically (true only for some cases), then
the problem can be solved in closed form.

• Many optimization algorithms essentially approximate the KKT conditions in an
iterative fashion; e.g., the interior-point methods.

Example: Entropy maximization

min
∑n

i=1 xi log xi

s.t. 1Tx = 1

with domain D = Rn
++. The KKT equations admit a closed form

x⋆
i =

1

n
, i = 1, . . . , n

ν⋆ = logn− 1
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Example: Power allocation for maximum sum capacity

max

n
∑

i=1

log

(

1 +
xi

σ2
i

)

s.t.
n
∑

i=1

xi = Ptotal, x � 0

By solving the KKT conditions analytically, the solution is

x⋆
i = max

{

0,
1

ν⋆
− σ2

i

}

where ν⋆ is adjusted to satisfy

n
∑

i=1

max

{

0,
1

ν⋆
− σ2

i

}

= Ptotal

This is the water-filling solution.

1/ν⋆

σ2
i
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Conic Optimization

• Standard conic problem

min cTx

s.t. x �K 0, Ax = b

where K is a proper cone.

• Its dual problem

max bTν

s.t. c−ATν �K∗ 0

where K∗ = {y | yTx ≥ 0, for all x ∈ K} is the dual cone of K (convex cone).

• For K = Rn
+ (LP), K = SOCn (SOCP), or K = Sn

+ (SDP), K is self-dual:

K = K∗.
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Example: LP. We have seen that the primal-dual pair of the standard LP is

min cTx
s.t. x � 0, Ax = b

max bTν
s.t. c−ATν � 0

Example: SDP. The standard SDP

min tr(CX)
s.t. X � 0, tr(AiX) = bi, i = 1, . . . ,m

has its dual taking on the inequality form

max bTν

s.t. C −
m
∑

i=1

νiAi � 0
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• Most properties of Lagrangian duality have their equivalent counterparts in conic
opt.

• For example, Slater’s condition: If there exist x such that

x ≻K 0, Ax = b

then strong duality holds.

• KKT conditions
Ax⋆ = b
x⋆ �K 0
λ⋆ �K∗ 0

λ⋆Tx⋆ = 0
c−ATν⋆ = λ⋆
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