Lagrangian Duality

Wing-Kin (Ken) Ma

Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong

Lesson 10, ELEG5481

Recall that...

• Optimization problem in a standard form (not necessarily convex)

min
$$f_0(x)$$

s.t. $f_i(x) \le 0, \quad i = 1, ..., m$ (P)
 $h_i(x) = 0, \quad i = 1, ..., p$

with problem domain $\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$.

- We call (P) the **primal problem** (to distinguish from dual introduced soon).
- Primal optimal value

$$p^{\star} = \inf_{x \in C} f_0(x)$$

where C is the primal feasible set

$$C = \{x \mid f_i(x) \le 0, \ i = 1, \dots, m, \ h_i(x) = 0, \ i = 1, \dots, p\}$$

Lagrangian

• Lagrangian of the primal problem (P)

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)$$

where $\lambda \succeq 0$ (or $\lambda_i \ge 0$ for i = 1, ..., m), & $\nu \in \mathbf{R}^p$.

- Fixing an x, $L(x, \lambda, \nu)$ is an affine function of (λ, ν) (convex & concave).
- Lagrange dual function:

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu)$$

By pointwise infimum of concave functions, g is concave (even though (P) is nonconvex).

Linear approximation interpretation of Lagrangian:

• The original problem

min $f_0(x)$ s.t. $f_i(x) \le 0, \ i = 1, \dots, m$ $h_i(x) = 0, \ i = 1, \dots, p$

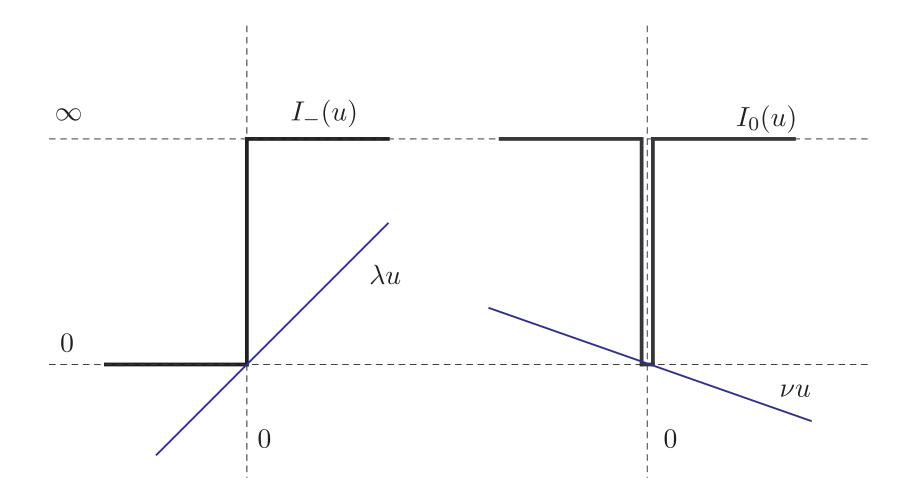
may be written as an unconstrained problem

min
$$f_0(x) + \sum_{i=1}^m I_-(f_i(x)) + \sum_{i=1}^p I_0(h_i(x))$$

where $I_{-}(u) = 0$ for $u \leq 0$, $I_{-}(u) = \infty$ otherwise; $I_{0}(u) = 0$ for u = 0, $I_{0}(u) = \infty$ otherwise.

• Lagrangian may be seen as a linear approx. of the reformulated objective

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$



Lower Bound Property and Dual Problem

• Lower bound on primal optimal: For any $\lambda \succeq 0 \& \nu$,

 $g(\lambda,\nu) \le p^\star$

• **Dual problem** of (P)

$$\max_{\lambda,\nu} g(\lambda,\nu) \tag{D}$$

s.t. $\lambda \succ 0$

- Motivation: compute the best lower bound on p^{\star} .
- (D) is always convex, whether or not (P) is convex.
- Dual optimal value:

$$d^{\star} = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu)$$

Example: Standard form LP

$$\min c^T x$$

s.t. $Ax = b, \quad x \succeq 0$

Its Lagrangian

$$L(x,\lambda,\nu) = c^T x - \lambda^T x + \nu^T (b - Ax) = (c - \lambda - A^T \nu)^T x + b^T \nu$$

Its dual function

$$g(\lambda,\nu) = \begin{cases} b^T\nu, & c - \lambda - A^T\nu = 0\\ -\infty, & \text{otherwise} \end{cases}$$

Hence its dual problem is

$$\begin{array}{ll} \max & b^T \nu \\ \text{s.t.} & c - A^T \nu = \lambda, \ \lambda \succeq 0 \end{array} \iff \begin{array}{ll} \max & b^T \nu \\ \text{s.t.} & c - A^T \nu \succeq 0 \end{array}$$

which is an LP in inequality form.

Example: Homogenous Boolean QP (very hard problem)

min
$$x^T C x$$

s.t. $x_i \in \{-1, +1\}, i = 1, ..., n$

where $C \in \mathbf{S}^n$, not necessarily PSD.

The problem can be rewritten as

min
$$x^T C x$$

s.t. $x_i^2 = 1, \ i = 1, ..., n$

The dual problem is shown to be an SDP

$$\max - \mathbf{1}^T \nu$$

s.t. $C + \operatorname{diag}(\nu) \succeq 0$

where 1 is the all-one vector, & $diag(\nu)$ is a diagonal matrix with diagonals given by ν .

Weak and Strong Duality

• The primal and dual optimal values

$$p^{\star} = \inf_{x \in C} f_0(x), \qquad d^{\star} = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu)$$

generally satisfy

$$d^{\star} \le p^{\star}.$$

This is called **weak duality**.

• Strong duality refers to cases where

$$d^{\star} = p^{\star}$$

- Strong duality does not hold for general nonconvex problems, except for some special cases.
- Strong duality **usually** holds for convex problems. (convex problems without strong duality would be pathological cases, from an application viewpoint)

Strong Duality Conditions for Convex Problems

- Constraint qualifications refer to conditions under which strong duality holds.
- Slater's constraint qualification: Suppose (P) is convex. If (P) is strictly feasible; i.e., there exists a point *x* ∈ *C* such that

$$f_i(x) < 0, \quad i = 1, \dots, m$$

then strong duality holds.

• Slater's condition provides a very important implication that convex problems usually (though not always) have strong duality.

Examples where Strong Duality holds for a Nonconvex Problem

Minimum eigenvector problem:

 $\min x^T C x$
s.t. $x^T x = 1$

where $C \in \mathbf{S}^n$ is not necessarily PSD. (strong duality proof is quite simple)

Nonconvex QCQP with one constraint:

min
$$x^T A_0 x + 2b_0^T x + c_0$$

s.t. $x^T A_1 x + 2b_1^T x + c_0 \le 0$

where $A_0, A_1 \in \mathbf{S}^n$ are not PSD. (require S-lemma to prove strong duality)

• In these special examples strong duality is quite fragile. Adding a few more constraints (even affine) could destroy strong duality.

Implication of Strong Duality in Algorithms

- Suppose that strong duality holds.
- Suppose that we can design an opt. algorithm that can produce, at iteration k,

a primal feasible $x^{(k)}$, a dual feasible $(\lambda^{(k)}, \nu^{(k)})$

and that it has a structure

repeat

$$\begin{split} k &:= k+1. \\ \text{Produce primal-dual feasible } (x^{(k)}, \lambda^{(k)}, \nu^{(k)}) \text{ from } (x^{(k-1)}, \lambda^{(k-1)}, \nu^{(k-1)}). \end{split}$$

until a stopping criterion is satisfied.

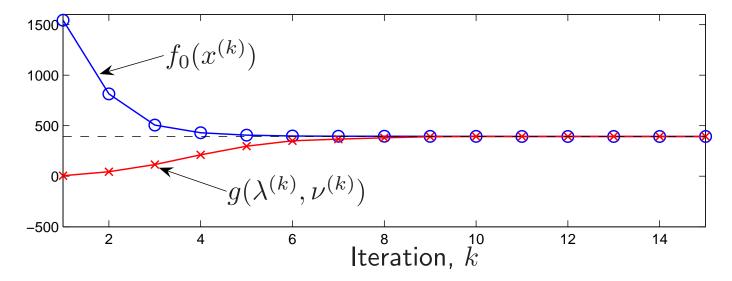
• If we stop the algorithm when

$$f_0(x^{(k)}) - g(\lambda^{(k)}, \nu^{(k)}) \le \epsilon$$

for a given tolerance $\epsilon > 0$, then

$$f_0(x^{(k)}) - p^* \le \epsilon$$

that is, an ϵ -optimal solution is guaranteed.



Primal & dual values of a primal-dual path-following algorithm.

Implication of Strong Duality in Optimality Conditions

- Suppose that strong duality holds, & that $(x^{\star}, \lambda^{\star}, \nu^{\star})$ is a primal-dual optimal point.
- **Complementary slackness:**

$$\lambda_i^{\star} f_i(x^{\star}) = 0, \quad i = 1, \dots, m$$

It implies two possibilities

$$f_i(x^*) < 0 \implies \lambda_i^* = 0$$
$$\lambda_i^* > 0 \implies f_i(x^*) = 0$$

Solving the Primal Problem from the Dual

- Again suppose strong duality holds, & $(x^{\star}, \lambda^{\star}, \nu^{\star})$ is primal-dual optimal.
- Further, suppose that $(\lambda^\star,\nu^\star)$ is known. If

$$\min_{x \in \mathcal{D}} L(x, \lambda^*, \nu^*) \tag{(†)}$$

has a unique solution, then its solution is x^{\star} .

- Implication: If the dual problem can be easily solved, then we can solve the dual problem first, followed by solving the unconstrained minimization (†).
- Further, for a convex problem

$$L(x,\lambda^{\star},\nu^{\star}) = f_0(x) + \sum_i \lambda_i^{\star} f_i(x) + \sum_i \nu_i^{\star} h_i(x)$$

is convex in x (by non-negative weighted sum). Hence (†) can be solved by

$$0 = \nabla_x L(x, \lambda^*, \nu^*) = \nabla f_0(x) + \sum_i \lambda_i^* \nabla f_i(x) + \sum_i \nu_i^* \nabla h_i(x)$$

Karush-Kuhn-Tucker (KKT) Conditions

- Suppose $f_i \& h_i$ are differentiable.
- For convex problems with strong duality, the sufficient & necessary conditions for $(x^\star,\lambda^\star,\nu^\star)$ to be optimal are

$$\begin{split} h_i(x^{\star}) &= 0, \quad f_i(x^{\star}) \leq 0, \forall i \quad \text{(primal feasibility)} \\ \lambda_i^{\star} &\geq 0, \forall i \quad \text{(dual feasibility)} \\ \lambda_i^{\star} f_i(x^{\star}) &= 0, \forall i \quad \text{(complementary slackness)} \\ \nabla f_0(x^{\star}) + \sum_i \lambda_i^{\star} \nabla f_i(x^{\star}) + \sum_i \nu_i^{\star} \nabla h_i(x^{\star}) &= 0 \end{split}$$

- For a nonconvex problem with strong duality, KKT conditions are necessary but not sufficient.
- For a nonconvex problem with weak duality, KKT conditions are necessary conditions for local optimality with an additional assumption called *regularity*. (But if your problem only has one KKT point, then that KKT point is either optimal or there is no solution to the problem)

Importance of KKT conditions

- If the KKT conditions can be solved analytically (true only for some cases), then the problem can be solved in closed form.
- Many optimization algorithms essentially approximate the KKT conditions in an iterative fashion; e.g., the interior-point methods.

Example: Entropy maximization

$$\begin{array}{ll} \min & \sum_{i=1}^{n} x_i \log x_i \\ \text{s.t.} & \mathbf{1}^T x = 1 \end{array}$$

with domain $\mathcal{D} = \mathbf{R}_{++}^n$. The KKT equations admit a closed form

$$x_i^{\star} = \frac{1}{n}, \ i = 1, \dots, n$$
$$\nu^{\star} = \log n - 1$$

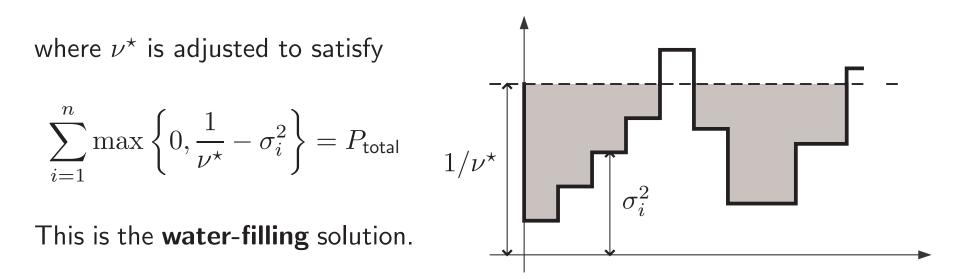
Example: Power allocation for maximum sum capacity

$$\max \sum_{\substack{i=1\\n}}^{n} \log\left(1 + \frac{x_i}{\sigma_i^2}\right)$$

s.t.
$$\sum_{i=1}^{n} x_i = P_{\text{total}}, \ x \succeq 0$$

By solving the KKT conditions analytically, the solution is

$$x_i^{\star} = \max\left\{0, \frac{1}{\nu^{\star}} - \sigma_i^2\right\}$$



Conic Optimization

• Standard conic problem

 $\min c^T x$
s.t. $x \succeq_K 0, \ Ax = b$

where K is a proper cone.

• Its dual problem

 $\max b^T \nu$
s.t. $c - A^T \nu \succeq_{K^*} 0$

where $K^* = \{y \mid y^T x \ge 0, \text{ for all } x \in K\}$ is the dual cone of K (convex cone).

• For $K = \mathbb{R}^n_+$ (LP), $K = SOC^n$ (SOCP), or $K = \mathbb{S}^n_+$ (SDP), K is self-dual:

$$K = K^*.$$

Example: LP. We have seen that the primal-dual pair of the standard LP is

$$\begin{array}{ll} \min \quad c^T x & \max \quad b^T \nu \\ \text{s.t.} \quad x \succeq 0, \ Ax = b & \text{s.t.} \quad c - A^T \nu \succeq 0 \end{array}$$

Example: SDP. The standard SDP

min
$$\operatorname{tr}(CX)$$

s.t. $X \succeq 0, \ \operatorname{tr}(A_i X) = b_i, \ i = 1, \dots, m$

has its dual taking on the inequality form

$$\max \quad b^T \nu \\ \text{s.t.} \quad C - \sum_{i=1}^m \nu_i A_i \succeq 0$$

- Most properties of Lagrangian duality have their equivalent counterparts in conic opt.
- For example, Slater's condition: If there exist x such that

$$x \succ_K 0, \qquad Ax = b$$

then strong duality holds.

• KKT conditions

$$Ax^{\star} = b$$

$$x^{\star} \succeq_{K} 0$$

$$\lambda^{\star} \succeq_{K^{*}} 0$$

$$\lambda^{\star^{T}}x^{\star} = 0$$

$$c - A^{T}\nu^{\star} = \lambda^{\star}$$